Fourier spectral methods for fractional-in-space reaction-diffusion equations
نویسندگان
چکیده
منابع مشابه
Fourier spectral methods for fractional-in-space reaction-diffusion equations
Fractional differential equations are becoming increasingly used as a powerful modelling approach for understanding the many aspects of nonlocality and spatial heterogeneity. However, the numerical approximation of these models is computationally demanding and imposes a number of computational constraints. In this paper, we introduce Fourier spectral methods as an attractive and easy-to-code al...
متن کاملNumerical solutions for fractional reaction-diffusion equations
Fractional diffusion equations are useful for applications where a cloud of particles spreads faster than the classical equation predicts. In a fractional diffusion equation, the second derivative in the spatial variable is replaced by a fractional derivative of order less than two. The resulting solutions spread faster than the classical solutions and may exhibit asymmetry, depending on the fr...
متن کاملSpectral Methods for Tempered Fractional Differential Equations
In this paper, we first introduce fractional integral spaces, which possess some features: (i) when 0 < α < 1, functions in these spaces are not required to be zero on the boundary; (ii)the tempered fractional operators are equivalent to the Riemann-Liouville operator in the sense of the norm. Spectral Galerkin and Petrov-Galerkin methods for tempered fractional advection problems and tempered ...
متن کاملSpectral algorithms for reaction-diffusion equations
A collection of codes (in MATLAB & Fortran 77), and examples, for solving reaction-diffusion equations in one and two space dimensions is presented. In areas of the mathematical community spectral methods are used to remove the stiffness associated with the diffusive terms in a reactiondiffusion model allowing explicit high order timestepping to be used. This is particularly valuable for two (a...
متن کاملDiscontinuous Galerkin Methods for Fractional Diffusion Equations
We consider the development and analysis of local discontinuous Galerkin methods for fractional diffusion problems, characterized by having fractional derivatives, parameterized by β ∈ [1, 2]. We show through analysis that one can construct a numerical flux which results in a scheme that exhibit optimal order of convergence O(hk+1) in the continuous range between pure advection (β = 1) and pure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BIT Numerical Mathematics
سال: 2014
ISSN: 0006-3835,1572-9125
DOI: 10.1007/s10543-014-0484-2